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Abstract—Multi-attribute time-series data plays a vital role in many different domains, such as economics, sensor networks, and
biology. An important task when making sense of such data is to provide users with an overview to identify items that show an
interesting development over time, including both absolute and relative changes in multiple attributes simultaneously. However, this is
not well supported by existing visualization techniques. To address this issue, we present ThermalPlot , a visualization technique that
summarizes combinations of multiple attributes over time using an item’s position, the most salient visual variable. More precisely, the
x-position in the ThermalPlot is based on a user-defined degree-of-interest (DoI) function that combines multiple attributes over time.
The y-position is determined by the relative change in the DoI value (∆DoI) within a user-specified time window. Animating this
mapping via a moving time window gives rise to circular movements of items over time—as in thermal systems. To help the user to
identify important items that match user-defined temporal patterns and to increase the technique’s scalability, we adapt the level of
detail of the items’ representation based on the DoI value. Furthermore, we present an interactive exploration environment for
multi-attribute time-series data that ties together a carefully chosen set of visualizations, designed to support analysts in interacting
with the ThermalPlot technique. We demonstrate the effectiveness of our technique by means of two usage scenarios that address the
visual analysis of economic development data and of stock market data.

Index Terms—Time-dependent data, multi-attribute data, focus+context, semantic zooming.
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1 INTRODUCTION

U NDERSTANDING temporal developments of multi-attribute
data is an essential task in many domains, such as eco-

nomics, sensor networks, biology, or data journalism. Gaining
new insights from such data can be challenging—even for a
single multi-attribute item. However, the complexity increases
significantly when scenarios comprise a collection of items, where
each item comes with a set of multiple attributes that change over
time. An important task when making sense of such data is to
provide users with an overview for identifying items that show
an interesting temporal development, including both absolute and
relative changes of multiple attributes simultaneously. Two of
the main challenges in this context are (I) integrating multiple
heterogeneous attributes from a collection of items and make
them comparable, and (II) showing multiple levels of temporal
dynamics. Although a wide array of visualization techniques have
been proposed for addressing both challenges, they often scale
poorly to multiple attributes, a large set of items, or long time-
series [2]. In contrast to visual approaches, automated alternatives
for summarizing multi-attribute data, such as Principle Component
Analysis (PCA) and Multidimensional Scaling (MDS), often do
not produce projections that can be interpreted intuitively. To the
best of our knowledge, no single approach exists that effectively
handles both challenge (I) and (II).

In this paper, we aim to fill this gap by presenting the
ThermalPlot visualization technique as our primary contribution.
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ThermalPlot provides an overview of a collection of items, al-
lowing analysts to quickly identify items that show an interesting
development over time. The technique encodes time-dependent
changes in attributes into an item’s position, which is known to be
the strongest visual variable for encoding quantitative data [25].
Changes can be derived effectively from the position in order to
detect outliers, trends, and patterns. The position is based on a
modular degree-of-interest (DoI) function which combines multi-
ple attributes with adjustable weight. As a secondary contribution,
we introduce an interactive exploration environment for multi-
attribute time-series data that integrates a series of support views
which enrich interaction with the ThermalPlot technique.

We introduce the ThermalPlot technique and its implemen-
tation using a publicly available data set from the Organization
for Economic Co-operation and Development (OECD)1. The data
set contains an extensive collection of attributes for all OECD
member countries. To illustrate our technique, we chose long-term,
and short-term interest rates collected on a monthly basis between
January 2000 and July 2015. We show how Latvia managed to
tackle the financial crisis in 2009 and how it developed afterwards.
In addition, we demonstrate scalability and effectiveness in a
stock data use case where a private investor makes informed stock
investment decisions using the ThermalPlot system.

2 RELATED WORK

Due to the broad applicability of multi-attribute time-series data,
a vast body of related work exists. For an extensive survey on
the special characteristics of time in general, and a systematic
discussion of available techniques, we refer the reader to the

1. http://stats.oecd.org, data set downloaded on 2015-08-21.

http://stats.oecd.org
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book on time-oriented data visualization [2] and the corresponding
online collection of available techniques2.

Exploring complex real-world phenomena almost always re-
quires taking into account a number of interrelated attributes along
with their changes over time. To effectively address this goal, it is
necessary to tackle two challenges, which we briefly mentioned
in the introduction already: (I) the integration and comparison
of multiple heterogeneous attributes for a collection of items,
and (II) the extraction of temporal dynamics on multiple levels.
In the following, we divide the related work along the lines of
these challenges and discuss existing solutions together with their
respective strengths and weaknesses.

2.1 Multi-Attribute Item Comparison

Addressing challenge (I)—integrating and comparing multiple
heterogeneous attributes of an item collection—is difficult because
the comparison should ideally work in both dimensions: across
multiple attributes of a single item and across a single attribute of
multiple items. Both can be addressed, for instance, by superim-
posing multiple curves in a line chart, by stacking multiple line
or horizon charts [16], or by using other pixel-based techniques
[3], [19]. However, these solutions often do not work for making
comparisons in both directions simultaneously. In our approach,
we summarize multiple-attributes using a modular DoI function
and visualize the aggregated items based on their DoI values.

2.2 Visual Analysis of Temporal Dynamics

To investigate the dynamics of time-dependent data, referred to
as challenge (II), an analyst needs to take into account temporal
patterns on both a global (coarse temporal granularity) and a
local scope (fine temporal granularity). The literature differentiates
between two possible kinds of visual mappings for encoding
time-dependent data: static (mapping time to space) and dynamic
(mapping time to time) [2].

Mapping Time to Time

The main advantage of using animation to communicate temporal
changes is its intuitiveness, as it is the way how we perceive
changes in real world. Users might also find it more exciting
and fun to use [29]. Examples for animated visualizations are
the well-known Gapminder Trendalyzer3 that uses bubble charts
to plot demographic changes over time and animated scatter plots
for stock market data [33].

While the use of animation can be a good design choice for
presentation purposes, animation is known to be problematic for
analysis tasks [21], [29]. Also, animation can be effective to
encode smooth changes, however, users might get confused if
the changes affect too many data items, if items do not move
in synchrony, or if items reverse their tracks over time [29].
The reason for these limitations is our limited ability to follow,
memorize, and compare information across time steps [9]. The
problem can be alleviated to a certain extent by allowing users
to pause, replay, and adjust animation speed. However, due to the
shortcomings, we chose to not rely on animation as a primary
encoding principle to summarize temporal changes in large item
collections.

2. http://survey.timeviz.net
3. http://www.gapminder.org

Mapping Time to Space
The principle of mapping time to space utilizes position to encode
change and temporal patterns. A wide array of techniques exist
for investigating seasonal patterns and trends (e.g., Cycle Plot [8]
and GROOVE [22]). However, they do not scale well to multiple
attributes, a large set of items, or long time-series. While heatmaps
and pixel-based techniques scale better, it can become difficult for
users to compare temporal patterns and trends across items or
attributes.

In contrast to animation, small multiples [35] and trajecto-
ries (aka traces) are better suited for analysis tasks performed
on time-dependent data [29]. The small multiple representation
can be a plot, a glyph [10], or any other visualization. While
small multiples can be used to create an effective overview (e.g.,
LiveRAC [27]), they do not scale beyond a couple of dozen items
or attributes. The sequence view in [31] is an example for a large
small multiple matrix showing line charts in 66 columns and 83
rows. However, such large matrices only work in combination with
automated detection and guidance mechanisms that point users to
relevant parts.

Trajectories
Trajectories are another option to encode change over time. Trajec-
tories are visual traces that appear when continuously plotting the
temporal development of items in 2D (e.g., [28], [31]) or 3D [37].
The emerging paths can then be used to compare patterns across
multiple items. However, multiple overlapping trajectories can
result in visual clutter, reducing their effectiveness [28]. Clustering
algorithms can alleviate the problem by aggregating trajectories
based on some kind of similarity metric [31], [38]. Ziegler et
al. [41], for example, cluster companies that belong to the same
industry sector and then present the trajectories for each company
in a small multiple view that is grouped by cluster. However,
this solution comes with extra cognitive load for comparing the
items. In the ThermalPlot, trajectories can be displayed on demand
for selected items only in order to keep the visual clutter at a
minimum.

DimpVis [20] is a technique where users directly interact with
the trajectories for navigating in time. While the technique is very
intuitive, it lacks direct support when items remain at one specific
position for several time steps and it can get difficult to work
with complex trajectories. Instead of allowing the user to directly
interact with the trajectories, we decided to let users select a single
time step via line charts in a detail view. The corresponding parts
of the trajectories are then highlighted accordingly.

In summary, we could not identify an existing technique that
allows users to address both challenges for a large collection of
multi-attribute items.

3 USER TASKS

In visual data analysis, users frequently face open-ended, ill-
defined tasks such as “find or detect something interesting”.
Particularly when dealing with multi-attribute data over time, such
discovery tasks can become very cumbersome, as many attributes
must be taken into account. To bring some clarity to such fuzzy
analytical objectives, we identified five user tasks that must be
supported and serve as a set of design requirements to be met.

T1: Monitor the development of multiple items in a certain
time window. The user wants to get an overview of multiple items
and monitor them simultaneously over a certain period of time.

http://survey.timeviz.net
http://www.gapminder.org
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T2: Select attributes and define their interestingness. Since
not all data item attributes are equally interesting or important
in specific use cases, the user needs to select one or multiple
attributes and define how interesting each attribute is in relation to
the other (DoI).

T3: Detect items that are (most) interesting. According to
T2, the user wants to detect items that best fulfill the defined
interestingness metric. Such items need to be made visually
salient.

T4: Understand why the items are considered to be in-
teresting. After discovering a set of interesting items, users need
to understand why the system considered a specific item to be
interesting.

T5: Monitor the development of a single item. Finally, it
is not only important to know which attributes contributed to the
interestingness of an item, but also to be able to analyze them
in detail. This involves the need to investigate and compare the
development of multiple attributes over time.

4 ThermalPlot VISUALIZATION CONCEPT

The fundamental idea underlying ThermalPlot is simple but ef-
fective: we map a user-specified degree-of-interest (DoI) value
on the x-axis and the change in the DoI value (∆DoI) on the y-
axis, as illustrated in Figure 1. Plotting an attribute and its first
derivative is not new (see for instance Figure 2 in [23] that plots
the stock price vs. price change). However, instead of making
static plots for single attributes, we create interactive visualizations
that summarize the temporal development of multiple attributes
(addressing task T1).
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Fig. 1: The DoI value is mapped to the x-axis and the ∆DoI to
the y-axis. DoI values that change over time result in distinctive
positions and trajectories of items in the ThermalPlot space.
The DoI values of the examples are (a) linearly increasing, (b)
constant, (c) decreasing and then constant, and (d) decreasing
first and then increasing.

In the ThermalPlot the DoI value is a weighted combination
of one or multiple attributes over time, as explained in detail in the
following section. Figure 2 shows a ThermalPlot visualization of
the previously mentioned OECD data set. Depending on the usage
scenario, the analyst defines a DoI function that results in high
DoI values for one or multiple items of interest (addressing task
T3). The ∆DoI is determined by the DoI change between the start
(ts) and end (te) of a user-defined time window (see Figure 2(b)).
The items are then placed in the plot according to their DoI and
∆DoI values. This mapping results in a visualization where users
can derive an aggregated summary of the items’ developments
over time from their positions in the plot. Latvia, for instance,
was hit hard by the financial crisis in 2009, but showed a positive
development in the short-term interest rate in the following years
(compared to 2006). Thus, it is positioned in the upper left area
(see Figure 2(a)). In contrast, Greece has a constant positive short-
term interest rate, but is located in the lower left area because of

the ongoing negative development of the higher weighted long-
term interest rate attribute.

Another consequence of this mapping are the distinctive move-
ments of items within the plot over time that are reminiscent of
a thermal system. Items whose DoI increases move from left to
right (see Figure 1(a)), while items with decreasing DoI move
from right to left (see Figure 1(c)). The faster the DoI changes, the
higher the items will rise. Consequently, negative changes in the
DoI values result in downward movements of items. Mapping the
∆DoI values to the y-axis naturally separates items with a positive
trend from those with a negative trend over the chosen time
window. Together, this behavior results in circular movements
of items. The magnitude of changes in the multi-attribute data
determines the size of the circular patterns, resulting in macro and
micro movements. Figure 1 illustrates four example movements
through the ThermalPlot space, together with the corresponding
development of the DoI value over time. Note that this does
not necessarily mean that the items are constantly changing their
positions in the plot, as the position is only updated when new data
arrives in live streaming scenarios. Depending on the frequency of
the updates, this might only happen monthly, as in our OECD use
case, or daily, as in the stock market use case.

The ThermalPlot concept is particularly powerful in two
basic scenarios: (1) showing a static snapshot that summarizes
the temporal development of items in a given time window. (2)
presenting the current status of a live streaming data set, where
item positions are slowly updated when new data comes in.

4.1 Modular Degree-of-Interest (DoI)

Using DoI functions to adapt the visual representation is a well-
known approach, and has been applied in many different ways
and contexts, for example, to explore trees [11], temporal data [7],
large static graphs [36], dynamic graphs [1], and to the visual anal-
ysis of small interconnected biological networks [24]. Intuitively,
the value that results from a DoI function should reflect how
interesting a particular item is to the analyst. In the ThermalPlot an
item’s position at a specific time point directly corresponds to its
DoI value and therefore represents its interestingness. Before we
discuss the additional roles of the DoI function in the ThermalPlot
besides positioning the items, we introduce the method by which
DoI values can be calculated for time-series data.

In his fundamental work on generalized fisheye views [11],
Furnas introduced the concept of DoI, where the function for
calculating the DoI can be driven by various attributes. Which
attributes define the importance of an item depends on the data
set and task. The attributes that contribute to the DoI can be
either static, such as the founding year of the state, or dynamically
changing over time, such as the interest rate or the gross domestic
product (GDP) of a country. ThermalPlot supports multi-attribute
DoI functions, where for each time point individual attribute
values are combined using a weighted sum, resulting in a single
raw DoI value (DoIraw(t)) (addressing task T2).

DoIraw(t) =
n

∑
i=1

wi× vi(t) |
n

∑
i=1

wi = 1.

The weights applied can be defined freely by the user where
n is the number of attributes that contribute to the raw DoI, w are
the weights of the components, which sum up to one, and vi(t) is
the attributes’ value at time point t.
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Fig. 2: The ThermalPlot technique (a) integrated in the exploration environment for multi-attribute time-series data showing the
development of countries within a user-specified time window (b). Item positions in the plot are based on the selected index point and
the weighted DoI attributes configured via the DoI editor (c). The detail view (d) shows the development of the composed DoI over
time as streamgraphs and line charts of single attributes for selected items. Latvia, for instance, was hit hard by the financial crisis
in 2009, but showed a positive development in the short-term interest rate in the following years (compared to 2006). Consequently,
it appears in the upper left area. In contrast, Greece appears in the lower left area, even though the short-term interest rate attribute
shows a constant positive development. However, it is surpassed by the higher weighted long-term interest rate attribute, which results
in an overall negative development of the country.

To incorporate trends and temporal effects at a specific time
point t, we apply an exponential smoothing strategy [13]. Ex-
ponential smoothing aggregates multiple previous time points
by assigning decreasing weights over time. We use the Holt-
Winters exponential smoothing method (also termed second-order
exponential smoothing) [40], which is known to work well with
data that contains trends or seasonal patterns.

DoI(t) = α×DoIraw(t)+(1−α)×
(DoIraw(t−1)+DoItrend(t−1)) .

The α (0≤ α ≤ 1) smoothing factor determines how many of
the previous time steps influence the current value. An α value
of 1 disables smoothing, while a value close to zero results in a
strongly smoothed value. DoItrend(t) is an estimator for the trend
of the time series, where β (0≤ β ≤ 1) is an additional smoothing
factor for the trend similarly:

DoItrend(t) = β × (DoI(t)−DoI(t−1))+

(1−β )×DoItrend(t−1).

Both parameters are configurable by the user. By default, we
use α = 0.4, β = 0.4 in the OECD use case.

An inherent problem of double exponential smoothing is
finding an initial value for DoI(0) and DoItrend(0). Depending
on α and β , the influence of one specific time point t− k on the
current time point t can be computed. Thresholding the influence
leads to a k which can be used as the starting point for computing
the current time point t by setting DoI(t− k) = DoIraw(t− k) and
DoItrend(t− k) = 0. In our OECD scenario, for instance, we used
k = 12, which corresponds to one year, as the granularity of k is
defined in months. This results in a weight of time point t− k of

just 0.00087 at the current time point t when using an alpha value
of 0.4.

For calculating the ∆DoI, the user needs to specify the time
window (ranging from ts to te with ∆t = te− ts). The ∆DoI is then
defined as:

∆DoI(t) = DoI(t)−DoI(t−∆t).

In the case of t = te, this leads to ∆DoI(te) =DoI(te)−DoI(ts),
i.e., the DoI’s change within the selected time window.

Normalization
To obtain correct DoI values that result in valid positions of
items in the ThermalPlot space, it is essential that the values of a
specific item’s attribute that contributes to the DoI can be directly
compared across items in a meaningful way (e.g., the population
of a country). In contrast, interest rates of a country are determined
by many factors and their absolute values cannot be meaningfully
compared. We address this problem by letting the user define an
index time point tindex that serves as a reference point [4]. For the
OECD data set, this reference point could be, for instance, a year
before the financial crisis. Taking the change relative to the index
point rather than absolute values enables comparison of the DoI
values across items.

vrel(t) =
v(t)− v(tindex)

v(tindex)
.

A related issue is that values across various attributes need
to be in the same range before they can be incorporated into a
combined DoI value. To address this problem, we allow users to
specify a min/max value for each attribute, which we then use to
normalize the values across attributes.
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DoI Symmetry
DoI values are commonly defined in the range [0,1], where 0
means not interesting at all and 1 highly relevant. However, in
scenarios that use an index point for normalization, the DoI values
can be both positive and negative. In the OECD use case, for
instance, an analyst could be interested in the biggest losers of
the financial crisis in 2009 (negative overall DoI) that showed an
upward trend in the following year (positive ∆DoI). To support
such scenarios, we define the DoI in the range [−1,+1], as
illustrated in Figure 1. In these symmetric DoI cases, 0 still means
not interesting. However, we let users define whether negative,
positive, or both DoI values are of interest (see Section 4.3 for
details).

4.2 Clutter Reduction Strategies
As in any scatterplot representation, a high density of marks in
a certain region of the plot can result in occlusion problems and
visual clutter. To increase the scalability of the ThermalPlot tech-
nique regarding the number of items, we apply a two-fold strategy
that combines semantic zooming [12] with optional orthogonal
stretching of scales [30].

Semantic zooming
We use semantic zooming to adapt the level of detail of an item
to its DoI or ∆DoI value (addressing task T3). In our approach
it is possible to define representation borders, that cause the
representation to change when crossed. The borders can be defined
either statically for a specific scenario or interactively by a user.
Representation borders can be defined for both axes, resulting in a
grid in which the level of detail can be specified for each grid cell
(see Figure 3). Hence, every cell can also be seen as a rectangular
semantic lens [34]. For instance, if a user is interested in items
that are located in the sectors on the upper right as well as those
contained in the first grid column on the left in the ThermalPlot,
she can increase the level of detail for these particular regions of
the plot.

-0.9 -0.8 -0.4 +0.3 +0.5 +0.7

+0.5

-0.5

DoI -1 +10

0

Δ
D
o
I

L3

L3

L3

L2

L2

L2

L1

L1

L1

O

O

O

L1

L1

L1

L2

L2

L1

L3

L2

L1

L1 L2 L3TP TP L4 TP

Fig. 3: DoI values between [-1,1] are mapped to the x-axis and
∆DoI values with a variable range to the y-axis. The visual space
can be geometrically distorted by manipulating the DoI value
associated with a representation border. The level of detail in each
region of the plot can be configured individually. Examples of the
pre-defined levels of detail L1 to L4 are shown at the bottom.
Note that L4 is reserved for selections only and O indicates an
embedded overview visualization (see Section 4.3).

What information the various levels of detail show depends
again on the usage scenario. The design space ranges from a single

pixel to multivariate data glyphs [39], and even embedded full-
fledged visualizations. In our prototype we support four levels of
detail, as illustrated in Figure 3, that are defined incrementally.
This means that the representation of each level contains all visual
elements from the previous level, plus new elements for encoding
further details.

L1: Colored Mark. As a mark we chose a circle that can be
colored by either a static attribute value or a temporally changing
attribute that is aggregated to a single value.

L2: L1 + Label. The L2 representation extends the mark from
L1 by the item’s textual label.

L3: L2 + Line Chart. In addition to the mark and label, we
show a full line chart with the temporal development of a single
attribute for the selected time window.

L4: L3 + Trajectory. In L4 we add a trajectory that describes
the path an item takes through the ThermalPlot space over time.

Orthogonal Stretching
In addition to semantic zooming, we use orthogonal stretching [30]
as a second measure to reduce the visual clutter. Which parts
of the scale should be stretched or compressed can either be
statically defined for a specific setup or dynamically set by the
user. In theory, the representation borders are independent of the
handles for the orthogonal stretching. However, for the sake of
simplicity in the interaction, we use the same interactive borders
for controlling both. Users can move a representation border by
dragging the small triangle that points away from the plot, while
the triangle pointing towards the plot is the handle for distorting
the space, as illustrated in Figure 3. Integrating a fisheye lens
would also be an option. However, as the items’ position plays a
central role in our method, we decided to refrain from applying
non-linear distortion techniques.

4.3 Integrated overview visualization
Items with a zero or low DoI value are by definition of no or low
interest to the user. So instead of representing them by their default
point-based representation, as shown in Figure 4(a), we optionally
use the space to visualize all items as marks inside an embedded
overview visualization (see Figure 4(b) or Figure 10). The fixed
layout of this visualization provides a meaningful structure that
users can employ for quickly locating items. Depending on the DoI
value range, the overview visualization can be either embedded in
the center of ThermalPlot or attached on the left or right side. To
flexibly tailor the ThermalPlot space to the task at hand, users can
freely move and resize the overview representation via drag-and-
drop.

What visualization technique fits best, depends on the domain
problem and data. In our OECD example, the European coun-
tries are shown in map form (see Figure 4(b)). For stock data
the companies can be visualized as a Map of the Market [26]
(see Figure 10). To provide further contextual information, static
attributes associated with the items can be additionally encoded in
the overview visualization. In our OECD use case, for instance,
the color of each country depends on its current DoI value. By
default, we apply a diverging color scale where red is mapped to
DoI = −1, gray to DoI = 0, and green to DoI = +1. Color-blind
users can switch to suitable alternative mappings. As all items that
are hidden by the overview visualization are of little or no interest,
we desaturate them in the treemap, to make items with a high DoI
value more salient.
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(a) Regular point-based representation

(b) Country map as embedded overview visualization

Fig. 4: Different options for visualizing items with a low or zero
DoI value. In (a) the items scattered around the vertical center line
are shown as points. (b) shows a country map embedded inside the
ThermalPlot that gives a meaningful structure to items.

As the overview contains all items with a DoI of zero or
close to zero, items seamlessly enter the ThermalPlot space with
an increased DoI value. The DoI threshold that defines up to
which value items remain inside the overview visualization can
be interactively specified by the user. Analysts can switch to
the regular point-based representation by hiding the overview
visualization (see Figure 4(a)). Animated transitions [17] allow
users to visually follow items during the switch operation.

5 INTERACTIVE EXPLORATION ENVIRONMENT
FOR MULTI-ATTRIBUTE TIME-SERIES DATA

To put the ThermalPlot method to practical use, a couple of
support visualizations are required. As illustrated in Figure 2,
the overall multi-coordinated view setup consists of four linked
components: (a) the ThermalPlot as the heart of our system, (b) the
timeline, (c) the DoI editor, and (d) the detail view. The timeline
showing the full time window for which data is available lets the
user set an index point tindex and a time window ts−te that specifies
the data which then serves as an input to ThermalPlot. The DoI
editor is the interface for composing the DoI function by means of
combining and weighting multiple attributes. Figure 5 illustrates
the inputs and the data flow between the different components.
The last component of the setup is a detail view that presents the
development of multiple attributes over time for the current item
selection.

To cover the requirements of a wide range of different usage
scenarios, the defined set of views in the ThermalPlot setup can

Multi-Attribute Time Series

data

ts, te

DoI function,
smoothing factors

DoI Computation
for each item

xdoi = DoI(te) ydoi =ΔDoI(te-ts)

User Input

Output

Item Position

Orthogonal Stretching

xdoi, ydoi

x, y

transformation
function

Representation
Borders

Data Input

DoI Editor

TimeWindow

Index Point
tindex

Fig. 5: Illustration of the data flow along with inputs and outputs.
The multi-attribute time series and the user input are combined
in the DoI and ∆DoI computation, which are then transformed by
the representation borders. The final output is the items’ x- and
y-position in the ThermalPlot space.

be extended with special-purpose views that are tailored to the
domain problem. For instance, when dealing with large item
collections, it can be useful to add an interface for browsing
and filtering items by static attributes or weighted combinations
thereof [14] (see Section 6).

5.1 Interaction with the ThermalPlot

In the prototype implementation, multiple ways of selecting items
exist. Users can directly select single items in the plot by clicking
on their respective representations. The items’ representation in
the overview visualization depends on the used visualization
technique (e.g., countries on a map and blocks in a treemap),
while the ThermalPlot always uses the point, which is available
at all levels of detail. As an alternative, we provide a lasso
selection for flexibly defining arbitrary regions of interest. Instead
of completely removing non-selected items from the overview
visualization and the ThermalPlot itself, we decrease their opacity
to keep them as contextual information.

5.2 Timeline

The timeline serves two purposes. First, it provides the user with
an overview of the time window for which the multi-attribute data
is available (addressing task T1). Second, it is the interface for
setting the index point (see Section 4) and the time window which
defines the data upon which the DoI over time is calculated. Both
the time window and the index point can be moved interactively
using drag-and-drop. The size of the time window can also be
changed dynamically. A change in one of these settings triggers
an update of the ThermalPlot where the data is streamed from
the server. During data transfer, we indicate the progress by a
gradually filled up background of the time window widget in the
ThermalPlot and the detail view shows the portion of the data that
has already been transmitted.

For scenarios where the item collection can be represented by a
surrogate attribute that summarizes all items, we show a line chart
in the background of the timeline. To indicate that the position of
the index point defines the global point of reference for the DoI
calculation, we set the baseline of the line chart according to the
value of the summary attribute at the corresponding time point.
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We then color all parts of the curve that are above the baseline
in green and the parts below in red, as can be seen in Figure 2.
For stock market data, for instance, we plot the Standard & Poor’s
500 (S&P 500) index point over time. If no meaningful summary
attribute is available, as in our OECD data set, we define a default
attribute that is used for the timeline (e.g., the average short-term
interest rate).

5.3 Detail View
The ThermalPlot technique summarizes effectively the devel-
opment of an item collection based on the aggregated multi-
attribute DoI. Additionally, it is essential that users understand
what contributes to the DoI value of items over time (task T4) and
are able to drill down to the actual time-series data of the different
attributes that contribute to the aggregated DoI value (task T5).
In the detail view, we therefore show a streamgraph [6] for every
selected item encoding the DoI value and its weighted components
over time together with the full line charts for a predefined set
of attributes that are associated with the currently selected items
(addressing tasks T4 and T5). Both chart types show the data
within the chosen time window ts − te. If data is missing for
specific time points, we interpolate them linearly based on their
nearest valid neighboring data points.

5.4 DoI Visualizations
We added three building blocks to the setup that are designed to al-
low the user to specify and understand the composed DoI function:
the DoI editor as an interface for interactively configuring the DoI
function; DoI streamgraphs for visualizing the contribution of
each attribute for a specific item; and trajectories for showing the
path an item takes through the ThermalPlot space.

DoI Editor
Users can interactively define and manipulate the multi-attribute
DoI via an integrated DoI editor, as can be seen in Figure 6
(addressing task T2). The editor can operate at two different levels
of detail. The overview, which is shown by default, presents the
currently set weighting of individual components as a stacked bar.
Using drag-and-drop, users can directly manipulate the weights of
individual components. The weight of a component is redundantly
encoded in the length of the bar and its saturation, and additionally
shown in a text label. After switching to the detail mode, users
can change the DoI formula by adding and removing attributes,
setting their value range, and by optimizing parameters of the
exponential smoothing (see Section 4.1). Additionally, the user
can invert the meaning of an attribute, which is particularly useful
when positive values have a negative meaning associated (e.g., the
lower a country’s interest rate, the better).

DoI Streamgraph
To support the user in understanding the effects the DoI function
has on the items in the ThermalPlot, we add item-specific stream-
graphs to the detail view (addressing task T4). The streamgraph
visualizes how much each attribute contributes to the aggregated
DoI value over time. Figure 7 shows an item’s streamgraph for
the DoI settings defined in Figure 6. In the streamgraph, every
contributing attribute is represented as a stream whose height
is proportional to the weighted attribute value wi × vi(t). See
Section 4.1 for further details on the computation of multiple-
attribute DoI values. In the example in Figure 7, the short-term

b

a

c

Fig. 6: Multi-attribute DoI editor with a stacked bar that encodes
the weighting of individual components (a). Using the interface
below, the user can add components, invert the semantic, and set
the range for each attribute (b). Smoothing parameters are applied
globally (c).

interest rate attribute is always positive, while the long-term
interest rate is mostly negative. In cases where multiple attributes
contain positive and negative values, the individual streams can
cross each other. The color of each stream corresponds to the
color in the DoI editor bar.

Because of the layering principle, streamgraphs can by defini-
tion represent only positive values. However, to be able to encode
both components with a negative and with a positive impact on the
DoI, we decided to use a two-part representation: The parts above
and below the baseline show the contributions of the attributes that
exhibits positive and negative changes relative to the index point,
respectively. Hence, the raw DoI value is the difference between
the stream heights above and below the zero line.

The dotted line above the streamgraph representation indicates
the smoothed DoI value for each time point. The smoothing effect
is clearly visible when comparing the dotted line to the raw
streamgraph values, which show small fluctuations of the attribute
values.

We additionally indicate how much individual time points
contribute to the final smoothed DoI value by applying a horizontal
color gradient: the darker the color, the higher the impact on the
overall DoI.

In many real-world scenarios, missing data plays a role. An
example is the closed stock market on holidays and weekends,
where all associated attributes have no values for these days.
Depending on the usage scenario, there are many ways of dealing
with this problem. The missing values can be handled either in
the data space, by applying forecasting or interpolation strategies,
or in the view space, by clearly marking the missing data, for
instance.

In ThermalPlot we apply a nearest neighbor interpolation to fill
missing data values (see Section 5.3). However, it is essential that
users are aware of the strategies applied and their consequences,
as these can influence the results of multi-attribute DoI functions.
To address this issue, we explicitly indicate interpolated values
marked by a hatching pattern (see detail view in Figure 13).

Trajectories
With the highest level of detail (see L4 in Section 4.2) we
add trajectories to the item representation in the ThermalPlot.
A trajectory represents the item’s path within the selected time
window. The example in Figure 8 matches the DoI streamgraph
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Fig. 7: Streamgraph visualizing the contribution of each DoI
component at each time point within the time window. Streams
below the zero line indicate negative contributions, while the
dotted black line indicates the smoothed DoI value.

presented in Figure 7. The trajectories’ opacity decreases over
time (e.g., as in [29]), to allow correct interpretation of parts
of trajectories in which the DoI remains relatively constant. In
addition, the trajectories give analysts a static view of different
thermal effects, such as loops and periods of rest, without the
need for animation.

Fig. 8: Trajectory of a selected item in the ThermalPlot describing
the path an item takes through the ThermalPlot space over time.
The transparency along the trajectory encodes the item’s temporal
development.

Although the simultaneous display of trajectories of multiple
items can easily clutter the representation (see Figure 9), it
facilitates spotting items that behave very differently from the rest.
However, to keep the visual clutter at a minimum, trajectories are
disabled by default and shown for items that have been actively
selected only.

5.5 Implementation
The ThermalPlot prototype has a client-server architecture. The
server component is based on the recently published CloudGazer
infrastructure [32], which supports streaming of time-dependent
data for multiple items and attributes. By using different data
connectors, we can access either live data or data already col-
lected from a database. The web-client uses AngularJS4 for the
overall management. Visualizations are implemented in D3 [5]5.
An interactive version of the ThermalPlot environment and a
demonstration video is available on the accompanying website6.

4. http://angularjs.org; used Angular v1.2.6
5. http://d3js.org; used D3 v3.5.6
6. http://thermalplot.pipes-vs-dams.at

Fig. 9: Showing trajectories of multiple items simultaneously
allows users to identify items that behave differently from the rest.
However, as trajectories soon result in a cluttered representation,
they are turned off by default and shown for selected items only.

6 USE CASE

We demonstrate the value and utility of the ThermalPlot technique
by applying it to a stock market data set that includes multiple at-
tributes such as trade volume, open/close price, and daily low/high
for all companies traded in the Standard & Poor’s 500 (S&P 500)
index. We gathered the daily data via the Yahoo Finance API7.

The use case is based on multiple analysis sessions with a
consultant who invests parts of his private savings in stocks. Our
domain expert is 32 years old and works for a company that
specializes in economics and innovation policy consulting. The
first phase of the analysis took place in mid-July 2015 using
the thinking aloud method. The second phase was conducted in
August 2015 using self-reporting with an analysis diary.

The expert usually checks his personal portfolio once or twice
a week with the goal of making informed investment decisions.
His current decision-making process is based on a combined
investigation of the companies’ recent developments on the stock
market and quarterly published performance metrics (e.g., divi-
dend yield and earnings per share (EPS) growth) that are available
for all traded companies.

In his current workflow, he starts the analysis by investigating
the static performance metrics from quarterly reports. As we have
collaborated with him in a previous project, he already uses an
interactive LineUp ranking visualization [14] that allows him
to create a weighted combination of multiple static metrics to
identify companies that could be underrated and thus interesting
investment targets. He starts by going through the top-ranked
companies and checks their recent development on the stock
market by visiting online portals such as Yahoo Finance8 or finviz9.
However, collecting and matching this information from various
sources is a tedious and time-consuming process.

ThermalPlot provides the expert with a big picture that sum-
marizes the recent developments on the market (task T1). In order
for ThermalPlot to show meaningful positions for the companies,
the expert selects a time window and defines the DoI function. For

7. http://developer.yahoo.com/yql
8. http://finance.yahoo.com
9. http://finviz.com

http://angularjs.org
http://d3js.org
http://thermalplot.pipes-vs-dams.at
http://developer.yahoo.com/yql
http://finance.yahoo.com
http://finviz.com
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Fig. 10: ThermalPlot visualizing the recent development of all 500 companies from the S&P 500 index, according to the respective
DoI computation. The treemap is used as an integrated overview visualization and shows all companies listed in the S&P 500 index.
The annotations show the interpretation of our user for the different corner areas. Companies located in areas (a) and (c) are potential
investment candidates.

the stock market data, the timeline shows the overall development
of the S&P 500 index from the beginning of 2015 to the last
trading day—in this case August 14, 2015. He sets the time
window to include all data from the last two months of trading,
which in turn triggers loading of the corresponding data from the
server, as shown in Figure 10. To make the prices comparable
across companies, he sets the index point to the beginning of 2015
(see Section 4.1). Consequently, all companies with a considerable
positive development since the start of the year appear to the right
of the treemap, whereas companies with a negative development
are positioned to the left (see Figure 10). For the DoI computation
he chooses a weighted combination of the dynamic closing price
(75%) and the static attributes EPS growth (10%), which indicates
a positive business development, return on equity (10%), which
indicates competitiveness from the shareholders’ perspective, and
dividend yield (5%), which indicates the “shareholder friendli-
ness” (see the upper right corner of Figure 11 and addressing task
T2).

In the context of the stock market use case, the four corner
areas have special meaning for the expert, as shown in Figure 10.
The upper right area (b) contains strong companies with positive
long- and short-term development. Consequently, this area would
be the obvious investment choice, but comes with the risk of
containing already overrated companies that could go down soon.
Area (d) at the lower left contains companies with an ongoing
negative development that would pose high-risk investment tar-
gets. Our expert is particularly interested in the remaining two
areas: The lower right area (c) contains companies that developed
well in the beginning of the selected time window, but show a

recent negative trend. The expert assumes that this could be only a
minor short-term effect for a number of stocks and that their stock
prices could rise again soon. The last area, on the upper left (a),
contains companies with a negative development in the beginning
but a recent positive trend. This could be caused by recent good
news or reports, indicating a turnaround.

As an overview visualization, a centered treemap that cov-
ers the area defined by DoI values ranging from −0.2 to 0.2
is used. Companies in the treemap are grouped by industry
sector according to the Global Industry Classification Standard
(GICS) taxonomy10. The blocks representing the companies in
the treemap are colored according to their DoI (see Section 4.3).

The expert starts the analysis by looking at the distribution
of companies in the different areas of ThermalPlot. While the
upper left area (a) is empty, the lower right area (c) contains
three companies that he wants to investigate further: WMB, LYB,
and ANTM. After selecting WMB, he sees that the company is
part of the energy sector. Consulting the treemap, the majority of
companies from the energy sector have performed poorly since the
start of the year. As he closely follows the news and stock reports,
this confirms what he already knows—there was a lot of pressure
on the energy sector in the first half of the year. To take a closer
look, he selects all companies in the energy sector by clicking
the label of the sector in the treemap, as shown in Figure 11.
While the companies in the lower left area are of no interest to
the investor, he looks at WMB, which is a clear outlier located at
the upper border of the lower right area (c), and investigates its

10. http://www.msci.com/products/indexes/sector/gics

http://www.msci.com/products/indexes/sector/gics
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Fig. 11: Selecting the energy sector in the treemap highlights the stocks with the maximum detail level in the plot accordingly. At first
glance, TSO and VLO are the obvious choice, but they might already be overrated according to our expert’s own definition. Instead he
investigates WMB that is located in his areas of interest (see Figure 10 (c)). According to the poor LineUp rank (to the right) and the
loss in volume shown in the detail view (see Figure 13), he discards this company too.

Fig. 12: The expert selects the companies LYB and ANTM that are located in area (c) in Figure 10. He presumes that the stock price
for companies in this area could raise again soon. He discards ANTM, due to the poor LineUp rank (> 100) and would rather invest
in LYB, that can be found under the top 20 companies.

performance by inspecting the combined streamgraph (task T4)
and the individual attributes in the detail view (see Figure 13 and
addressing task T5). He recognizes an odd peak in the volume
line chart in late June. After a quick Internet search, he is able to
attribute the peak to a dividend payout announcement. After finally
checking the company’s rank in the LineUp visualization, where
it is ranked in the lower half (> 250 of 500), he decides to look
for other investment options. Still focusing on the energy sector,
the two outliers in the upper right area (b) grab his attention:
TSO and VLO. However, as companies in this area may already
be overrated according to his own definition, he decides to not
invest in the energy sector and clear the selection. He continues
by checking the development of LYB and ANTM, which are the

other two companies from his original selection (see Figure 12).
A further look in LineUp reveals that ANTM does not rank
highly (> 100) and does not meet his static performance metric
criterion. However, LYB is among the top 20 companies according
to the ranking and therefore seems to be a potentially lucrative
investment. Using ThermalPlot, the expert was able to effectively
identify one stock worth investing in from a large collection.

Informal User Feedback
The fact that the expert is now using ThermalPlot on a regular
basis demonstrates that he deems the tool as a valuable addition
to his current stock investment decision making process. He also
mentioned that the new analysis workflow is much more elegant
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Fig. 13: The detail view shows the DoI streamgraph and line
chart for the different attributes for the selected company WMB.
The hatching pattern in the streamgraph and line charts encode
missing values caused by weekends and holidays.

than his former approach and that the technique does an excellent
job in summarizing the current developments on the market.

However, he also noted that, as a post-analysis follow-up
step, he still needs to check external sources and recent news to
collect more evidence for backing up the investment decision he
made based on ThermalPlot. Consequently, ThermalPlot cannot
serve as a comprehensive tool for decision-making, but shows its
value for monitoring the market and quickly identifying potential
investment candidates. He further mentioned that it would make
sense to extend the time window to include the last two years, as
short-term fluctuations are not relevant to a private investor who is
rather interested in long-term investments. He also noted that the
trajectories are hard to interpret.

In the feedback sessions we discovered that it is difficult for
the user to configure the DoI and understand the implications of
the weighting and the exponential smoothing. To address these
issues, an advanced editor for constructing the DoI function and
further techniques for combining multi-attribute time-series data
must be developed.

7 DISCUSSION

Scalability
One of the most critical factors when it comes to judging the value
of a novel visualization technique is its scalability. In this regard,
the ThermalPlot suffers from the same occlusion problems as
scatterplots. This can be particularly problematic for items that are
shown in a higher level of detail, containing labels, line charts, and
trajectories. We address the problem by giving users the possibility
to change the level of detail combined with the option to spread
and compress the visual space, as discussed in Section 4.2. The
embedded and linked overview visualization also supports quick
identification and selection of items. However, ultimately it is the
user’s responsibility to resolve visual clutter in densely populated
areas of the plot. As future work, it seems promising to integrate
strategies that automatically adapt the scales and representation
borders. This way, the system could adapt to the current situation
without active interaction by the user. This could be particularly
valuable for live streaming scenarios, where items move through
the ThermalPlot space, to provide users with an overview that
enables them to quickly grasp the overall status of the items
and how they behave over time. To reduce the visual clutter in

certain regions by adapting the layout and level of detail, it would
be necessary to quantify the overlap of items in the respective
regions of the plot. Although this adaptive behavior has potential
to significantly reduce visual clutter, it is prone to get distracting
or even confusing to users.

Still, the proposed measures would not prevent the overlap
of items that have the exact same position, i.e., the same DoI and
∆DoI values. A possible countermeasure is to aggregate a group of
individual items to a single surrogate item. A disadvantage is that
users could then assume that all aggregated items have the exact
same temporal development. However, due to the multi-attribute
DoI function, the contribution that attributes have to the final DoI
can vary over time. The same argument holds for trajectories,
which could be considerably different due to the fact that only
limited previous time points are taken into account for computing
the final DoI (see Section 4.1 on exponential smoothing). To
address these issues, advanced aggregating techniques for time-
series data need to be developed. The integration of adaptive
behavior and aggregation techniques are both interesting topics
for future research, albeit beyond the scope of this paper.

ThermalPlot vs. Line Chart

One of the most common visualization techniques for time-series
data is a regular line chart with time mapped to the x-axis and
values (e.g., DoI values) mapped to the y-axis (see Figure 14(b)).
Line charts scale to only a small number of items and a small
time window for data with high variance [18]. Following the trend
of one particular line in a large collection is only possible using
interaction, i.e., by selecting an item or following a line with the
cursor. In contrast, ThermalPlot provides an overview that scales
to many items. The performance of an item can be identified by its
position (see Figure 14(a)). However, this technique comes with
the disadvantage that time is encoded implicitly.

In order to select the same items in ThermalPlot and a line
chart, the user needs to apply different interactions. Selecting
all items within a specific DoI value range in the line chart
corresponds to selecting a vertical slice in ThermalPlot (see
Figure 15(a)). Selecting all items with a specific ∆DoI value
requires to set an angular brush [15] in a line chart, whereas in
ThermalPlot the selection is a horizontal slice of the plot (see
Figure 15(b)). Selecting items within a specific DoI and ∆DoI
range requires a combination of region select and angular brush in
a line chart, whereas in ThermalPlot it can be achieved by making
a rectangular selection (see Figure 15(c)). A lasso selection in
ThermalPlot is even more flexible, as it allows the user to select
items within an arbitrary region. To achieve the same selection
in a line chart, however, a more complex series of interactions is
required.

Trajectories

Trajectories provide an easy and static way for showing an item’s
position for all time points within the selected time window. In
addition, they allow revealing periodic patterns, such as circles or
recurring peaks (see Section 5.4). However, these patterns can be
distorted in cases in which the optional orthogonal stretching is
applied. Depending on the chosen configuration, circular patterns
can look elliptical, for example. In ThermalPlot, we make the user
aware of the distortion by adding grid lines to the background of
the plot.
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(a) ThermalPlot with DoI mapped to x-axis and ∆DoI to y-axis.

(b) Line chart with time mapped to x-axis and DoI mapped to y-axis.

Fig. 14: ThermalPlot provides a better overview for a large
number of items, in this case companies from the S&P 500 index.
Assertions about the trend of a certain item in the line chart is
not possible. Only negative outliers (red), caused by stock splits,
can be clearly identified and found in ThermalPlot at DoI =−0.5
(bottom).

Granularity

In the visual analysis of time-dependent data, the level of gran-
ularity plays an important role [2]. In our stock market scenario,
for example, we work with daily closing prices. However, the
granularity could also be increased to one value per hour, minute,
or second. For automated high-frequency trading programs, the
level of granularity must be even higher. Granularity is a relevant
factor to ThermalPlot because it determines the visual patterns
and trends a user will see in the ThermalPlot. For instance, the
granularity level has a large impact on the path of the trajectories.
While a low sampling rate is sufficient for seeing macro patterns
(e.g., visible as large loops in the trajectories), a higher frequency
is required for micro patterns. Further, the smoothing algorithm
and its parametrization have a large impact on the results. The
appropriate level of granularity and the smoothing approach again
depend on the specific analysis task.

Animation

By default, the selected time window in ThermalPlot is fixed to
the user selection. However, the streaming capabilities of the im-
plementation (see Section 5.5) also enable real-time data updates.
In this case, the time window is shifted automatically to include
the latest time point. Newly incoming streaming data triggers the
re-computation of the user-selected DoI function (see Section 4.1),

(a) Selecting a vertical slice in ThermalPlot corresponds to a horizontal
region selection in a line chart.

(b) Selecting a horizontal slice in ThermalPlot corresponds to an angular
brush in a line chart.

(c) Selecting an arbitrary region in ThermalPlot corresponds to a combi-
nation of a region select and an angular brush in a line chart.

Fig. 15: Different selection shapes in ThermalPlot and the corre-
sponding results in a line chart.

and cause the items’ positions to be updated accordingly. However,
if the time window is very small, covering only a few time steps,
items can change their positions rapidly—making it hard to follow
the position changes. Therefore, by choosing a reasonably large
time window, it’s the user’s responsibility to control the change
behavior.

Technical Considerations
Besides the visual scalability of the technique, we should also
discuss briefly technical constraints comprising the performance in
data loading, streaming, and caching. Naturally, the larger the user-
selected time window, the more data needs to be transferred from
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the server to the client. When selecting a time window [ts, te] with
∆t = te−ts, the actual required data time window is [ts−∆t−k, te].
The additional history is needed for computing the ∆DoI value for
the start point of the selected time window ts (see Section 4.1 for
details on the ∆DoI computation).

We indicate the data loading progress by gradually filling up
the time window representation from left to right. In addition,
the opacity of the ThermalPlot is substantially decreased and the
thermal space is overlaid with an animated progress icon. Even
when data loading is in progress, the user can follow the narrative
resulting from the movements of the items within the selected time
window in the ThermalPlot.

8 CONCLUSION AND FUTURE WORK

We have presented ThermalPlot, a scalable visualization tech-
nique for exploring multi-attribute time-series data. We use the
position—the strongest visual variable—to encode item impor-
tance according to the DoI value in the horizontal direction and
according to the change in DoI value (∆DoI) in the vertical direc-
tion. This mapping allows users to see effectively the development
of attributes over time at a glance. We introduce several scalability
concepts and support views, including a timeline, a DoI editor, and
a detail view. We have introduced the ThermalPlot technique using
two data sets with different scale and complexity. We evaluated
the technique by means of a stock market use case and expert
feedback.

The ThermalPlot technique allows for monitoring multi-
attribute time-series data by combining short-term and long-term
value developments into a salient visual representation. Animation
and trajectories can help the user to analyze how an item developed
over time. On top of that, dedicated support for pattern search
could be a fertile area for future work. Apart from patterns
generated by the path of an item’s position, value patterns over
time such as ‘down-up-down’ are not specifically supported yet
but are useful in a number of application domains. Consequently,
better support for pattern search and exploration is another next
step for future work towards a comprehensive tool for analysis
and exploration of multi-attribute time-series data.

In addition to exploring historical and live data, we plan to
integrate forecasting algorithms that can indicate possible future
positions of items in the plot. This could be intuitively encoded by
expanding the trajectories we currently use for showing the items’
development over time. However, ways of encoding the introduced
uncertainty must be taken into account.

In the presented exploration environment, items are part of
a larger collection without relationships between them. In real-
world scenarios, however, items often influence each other and
therefore cannot be treated independently. In the financial market,
for instance, a crash of a single company can have a negative
impact on a large group of stakeholders, such as suppliers, cus-
tomers, and shareholders. Other examples are the monitoring of
IT networks, where a problem in the infrastructure can propagate
to other parts of the network [32] and the exploration of biological
pathways, where cellular effects can influence reactions further
downstream [24]. As part of future work, we plan to investigate
ways to conceptually integrate item relationships into the Ther-
malPlot environment. The challenges are manifold, ranging from
the fact that the relationships can also change over time, to com-
plex propagation effects. These are promising research directions
which can help to understand complex dynamic, heterogeneous
networks.
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